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Abstract—Real-time systems often involve hard timing con-
straints and concurrency, and are notoriously hard to design
or verify. Given a model of a real-time system and a property,
parametric model-checking aims at synthesizing timing valua-
tions such that the model satisfies the property. However, the
counter-example returned by such a procedure may be Zeno (an
infinite number of discrete actions occurring in a finite time),
which is unrealistic. We show here that synthesizing parameter
valuations such that at least one counterexample run is non-Zeno
is undecidable for parametric timed automata (PTAs). Still, we
propose a semi-algorithm based on a transformation of PTAs
into Clock Upper Bound PTAs to derive all valuations whenever
it terminates, and some of them otherwise.

I. INTRODUCTION

Timed automata (TAs) [1] are a popular formalism for real-
time systems modeling and verification, providing explicit ma-
nipulation of clock variables. Real-time behavior is captured
by clock constraints on system transitions, setting or resetting
clocks, etc. TAs have been studied in various settings (such
as planning [16]) and benefit from powerful tools such as
Uppaal [18] or PAT [20].

Model checking TAs consists of checking whether there
exists an accepting cycle (i.e. a cycle that visits infinitely often
a given set of locations) in the automaton made of the product
of the TA modeling the system with the TA representing
a violation of the desired property (often the negation of a
property expressed, e.g. in CTL). However, such an accepting
cycle does not necessarily mean that the property is violated:
indeed, a known problem of TAs is that they allow Zeno
behaviors. An infinite run is non-Zeno if it takes an unbounded
amount of time; otherwise it is Zeno. Zeno runs are infeasible
in reality and thus must be pruned during system verification.
That is, it is necessary to check whether a run is Zeno or not
so as to avoid presenting Zeno runs as counterexamples. The
problem of checking whether a timed automaton accepts at
least one non-Zeno run, i.e. the emptiness checking problem,
has been tackled previously (e.g. [21], [22], [8], [12], [13],
[23]).

It is often desirable not to fix a priori all timing constants
in a TA: either for tuning purposes, or to evaluate robustness
when clock values are imprecise. For that purpose, parametric
timed automata (PTAs) extend TAs with parameters [2]. Al-
though most problems of interest are undecidable for PTAs [3],

some (semi-)algorithms were proposed to tackle practical
parameter synthesis (e.g. [4], [17], [15], [7]). We address
here the synthesis of parameter valuations for which there
exists a non-Zeno cycle in a PTA; this is highly desirable
when performing parametric model-checking for which the
parameter valuations violating the property should not allow
only Zeno-runs. As far as the authors know, this is the first
work on parametric model checking of timed automata with
the non-Zenoness assumption. Just as for TAs, the parametric
zone graph of PTAs (used in e.g. [14], [4], [15]) cannot be
used to check whether a cycle is non-Zeno. Therefore, we
propose here a technique based on clock upper bound PTAs
(CUB-PTAs), a subclass of PTAs satisfying some syntactic
restriction, and originating in CUB-TAs for which the non-
Zeno checking problem is most efficient [23]. In contrast to
regular PTAs, we show that synthesizing valuations for CUB-
PTAs such that there exists an infinite non-Zeno cycle can
be done based on (a light extension of) the parametric zone
graph.

Outline: Section II recalls the necessary preliminaries.
We then present the concept of CUB-PTAs (Section III), and
show how to transform a PTA into a list of CUB-PTAs. Zeno-
free parametric model-checking of CUB-PTA is addressed in
Section IV, and experiments reported in Section V. Finally,
Section VI concludes and gives perspectives for future work.

II. PRELIMINARIES

Definition 1. A PTA A is a tuple
A = (Σ, L, l0, X, P,K0, I, E), where: i) Σ is a finite
set of actions, ii) L is a finite set of locations, iii) l0 ∈ L is
the initial location, iv) X is a set of clocks, v) P is a set of
parameters, vi) K0 is the initial parameter constraint, vii) I
is the invariant, assigning to every l ∈ L a guard I(l), viii) E
is a set of edges e = (l, g, a,R, l′) where l, l′ ∈ L are the
source and target locations, a ∈ Σ, R ⊆ X is a set of clocks
to be reset, and g is a guard.

The initial constraint K0 is used to constrain some pa-
rameters (as in, e.g. [14], [4]); in other words, it defines a
domain of valuation for the parameters. For example, given
two parameters pmin and pmax, we may want to ensure that
pmin ≤ pmax. Given A = (Σ, L, l0, X, P,K0, I, E), we write



A.K0 as a shortcut for the initial constraint of A. In addition,
given K ′

0, we denote by A(K ′
0) the PTA where A.K0 is

replaced with K ′
0.

Observe that, as in [23], we do not define accepting loca-
tions. In our work, we are simply interested in computing
valuations for which there is a non-Zeno cycle. A more
realistic parametric model checking approach would require
additionally that the cycle is accepting, i.e. it contains at
least one accepting location. However, this has no specific
theoretical interest, and would impact the readability of our
exposé.

Given a parameter valuation v |= A.K0, we denote by JAKv
the non-parametric TA where all occurrences of a parameter pi
have been replaced by v(pi).

III. CUB-PARAMETRIC TIMED AUTOMATA

A. CUB timed automata

In [23], the authors identified a subclass of TAs called CUB-
TAs for which non-Zenoness checking based on the symbolic
semantics is feasible. Furthermore, they show that an arbitrary
TA can be transformed into a CUB-TA. Based on their work,
we first show that arbitrary PTAs can be transformed into a
parametric version of CUB-TAs, and then solve the non-Zeno
synthesis problem based on parametric CUB-TAs.

B. CUB parametric timed automata

We extend the definition of CUB-TAs to parameters as
follows:

Definition 2. A PTA A is a CUB-PTA, iff there exists a
constraint A.K0 on parameters that guarantees every clock
has a non-decreasing upper bound along any path before
it is reset, for all parameter valuations satisfying the initial
constraint A.K0

Example 1. Consider the PTA A in Fig. 1a s.t. A.K0 = >.
Then A is not CUB: for x, the upper bound in l0 is x ≤ 1
whereas that of the guard on the transition outgoing l0 is
x ≤ p. (1,≤) ≤ (p,≤) yields 1 ≤ p. Then, > 6⊆

(
1 ≤ p

)
; for

example, p = 0 does not satisfy 1 ≤ p.
Consider again the PTA A in Fig. 1a, this time assuming

that A.K0 = (p = 1∧ 1 ≤ p′ ∧ p′ ≤ p′′). This PTA is a CUB-
PTA. (The largest constraint K0 making this PTA a CUB will
be computed in Example 2.)

C. CUB PTA detection

Given an arbitrary PTA, our approach works as follows.
Firstly, we check whether it is a CUB-PTA for some valua-
tions. If it is, we proceed to the synthesis problem, using our
cycle detection synthesis algorithm; however, the result may
be partial, as it will only be valid for the valuations for which
the PTA is CUB. This incompleteness may come at the benefit
of a more efficient synthesis. If it is CUB for no valuation,
it has to be transformed into an equivalent CUB-PTA (which
will be considered in Section III-D).

Our procedure to detect whether a PTA is CUB for some
valuations. For each edge in the PTA, we enforce the CUB

l0

x ≤ 1 ∧ y ≤ 1

l1

x ≤ p′ ∧ y ≤ p

l2

x ≤ p ∧ y ≤ 2
y := 0 x ≤ p′′ ∧ y ≤ p

(a) CUB for some valuations

l0

x ≤ p

l1

x < p

x ≤ 1

(b) CUB for no valuations

Figure 1: Examples of PTAs to illustrate the CUB concept

condition on each clock by constraining the upper bound in
the invariant of the source location to be smaller than or equal
to the upper bound of the edge guard. Additionally, if the
clock is not reset along this edge, then the upper bound of the
source location invariant should be smaller than or equal to
that of the target location. If the resulting set of constraints
accepts parameter valuations (i.e. is not empty), then the PTA
is a CUB-PTA for these valuations.

Example 2. Consider again the PTA A in Fig. 1a, assuming
that A.K0 = >. This PTA is CUB for 1 ≤ p∧1 ≤ p′∧p′ ≤ p′′.

D. Transforming a PTA into a disjunctive CUB-PTA

In this section, we show that an arbitrary PTA can be trans-
formed into an extension of CUB-PTAs (namely disjunctive
CUB-PTA), while preserving the symbolic runs.

Definition 3. A disjunctive CUB-PTA is a list of CUB-PTAs.

Example 3. In Fig. 2d (without the dotted, blue elements),
two CUB-PTAs are depicted, one (say A1) on the left with
locations superscripted by 1, and one (say A2) on the right
superscripted with 2. Assume A1.K0 is p1 ≤ p2 and A2.K0

is p1 > p2. Then the full Fig. 2d (including dotted elements)
is the PTA associated with the disjunctive CUB-PTA made of
A1 and A2.

The key idea behind the transformation from a TA into
a CUB-TA in [23] is as follows: whenever a location l is
followed by an edge e and a location l′ for which an upper
bound of clock x in edge g or in location l′ is smaller than
one in location l for some x if x is not a reset clock on
the edge e, otherwise the upper bound of clock x in edge g
is smaller than one in location l, location l is split into two
locations: one (say l1) with a “decreased upper bound”, that is
then connected to l′; and one (say l2) with the same invariant
as in l, and with no transition to l′. Therefore, the original
behavior is maintained.

Here, we extend this principle to CUB-PTAs. A major
difference is that, in the parametric setting, comparing two
clock upper bounds does not give a Boolean answer but a
parametric answer. For example, in a TA, (2,≤) ≤ (3, <)
holds (this is true), whereas in a PTA (p1,≤) ≤ (p2, <)
denotes the constraint p1 < p2. Therefore, the principle of
our transformation is that, whenever we have to compare two



l1
x ≤ p1

x ≤ p2

(a) Example 1

l0
x ≤ p

x ≤ p
x := 0

(b) Example 3

l1

l2 l3x ≤ p1
x ≤ p2
x := 0

x ≤ p1

p1 ≤ x ≤ p2 p1 > x > p2

(c) Example 2

l0

l21

x ≤ p1

l11
x ≤ p1

l21
′

x ≤ p1
∧x ≤ p2

x ≤ p2 x ≤ p2
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p1 > p2

x ≤ p2

(d) Transformed version of Fig. 2a

l0

l21x ≤ p1

l23x ≤ p1

l11
x ≤ p2

l12l12
′

x ≤ p2

p1 > p2
p1 ≤ p2

x ≥ p1
∧x ≤ p2

x ≥ p1
∧x ≤ p2 x ≤ p2

∧x := 0x ≤ p2
∧x := 0

p1 > x > p2

x ≤ p1

(e) Transformed version of Fig. 2c

Figure 2: Examples: detection of and transformation into
CUB-PTAs

parametric clock upper bounds, we consider both cases: here
either p1 < p2 (in which case the first location does not need
to be split) or p1 ≥ p2 (in which case the first location shall
be split). This yields a finite list of CUB-PTAs: each of these
CUB-PTAs consists in one particular ordering of all parametric
linear terms used as upper bounds in guards and invariants.

Example 4. Let us transform the PTA in Fig. 2a: if p1 ≤ p2
then the PTA is already CUB, and l1 does not need to be
split. This yields a first CUB-PTA, depicted on the left-hand
side of Fig. 2d. However, if p1 > p2, then l1 needs to be split
into l21

′ (where time cannot go beyond p2) and into l21 (where
time can go beyond p2, until p1), but the self-loop cannot be
taken anymore (otherwise the associated guard makes the PTA
not CUB). This yields a second CUB-PTA, depicted on the
right-hand side of Fig. 2d. Both make a disjunctive CUB-PTA
equivalent to Fig. 2a.

Similarly, we give the transformation of Fig. 2c in Fig. 2e.

IV. ZENO-FREE CYCLE SYNTHESIS IN CUB-PTAS

Taking a disjunctive CUB-PTA as input, we show in this
section that synthesizing the parameter valuations for which

there exists at least one non-Zeno cycle (and therefore an
infinite non-Zeno run) reduces to an SCC (strongly connected
component) synthesis problem.

First, we define a light extension of the parametric zone
graph as follows. The extended parametric zone graph of a
PTA A is identical to its parametric zone graph, except that
any transition (s, e, s′) is replaced with (s, (e, b), s′), where b
is a Boolean flag which is true if time can potentially elapse
between s and s′.

Consider the example in Fig. 2b. After taking one loop, we
have that x0 ≤ p: therefore, x0 is not necessarily 0, and b
is true. But consider v such that v(p) = 0: then in l1 time can
never elapse.

V. EXPERIMENTS

We compare three approaches: 1) A cycle detection synthe-
sis without the non-Zenoness assumption (called synthCycle).
The result may be an over-approximation of the actual re-
sult, as some of the parameters synthesized may yield only
Zeno cycles. If synthCycle does not terminate, its result is
an under-approximation of an over-approximation, therefore
considered as potentially invalid; that is, there is no guarantee
of correctness for the synthesized constraint. 2) Our CUB-
detection followed by synthesis : the result may be under-
approximated, as only the valuations for which the PTA is
CUB are considered. 3) Our CUB-transformation followed
by synthesis on the resulting disjunctive CUB-PTA. If the
algorithm terminates, then the result is exact, otherwise it may
be under-approximated.

We consider various benchmarks: protocols (CSMA/CD,
Fischer [2], RCP, WFAS), hardware circuits (And-Or, flip-
flop), scheduling problems (Sched5), a networked automation
system (simop) and various academic benchmarks.

We give from left to right in Table I the case study
name and its number of clocks, parameters and locations.
For synthCycle, we give the computation time (TO denotes
a time-out at 3600 s), the constraint type (⊥, > or another
constraint) and the validity of the result: if synthCycle
terminates, the result is an over-approximation, otherwise it
is potentially invalid. For CUBdetect (resp. CUBtrans) we
give the detection (resp. transformation) time, the total time
(including synthNZ), the result, and whether it is an under-
approximation or an exact result. We also mention whether
CUBdetect outputs that all, none or some valuations make
the PTA CUB; and we give the number of locations in the
transformed disjunctive CUB-PTA output by CUBtrans. The
percentage is used to compare the number of valuations (com-
parison obtained by discretization) output by the algorithms,
with CUBtrans as the basis (as the result is exact).

The toy benchmark CUBPTA1 is a good illustration:
CUBtrans terminates after 0.073 s (and7 therefore its result
is exact) with some constraint. CUBdetect is faster (0.015 s)
but infers that only some valuations are CUB and analyzes
only these valuations; the synthesized result is only 69 %
of the expected result. In contrast, synthCycle is much



Model synthCycle CUBdetect CUBtrans

Name #
X

#
P

#
L

t (s) Result Appr. Detec
t (s)

Total
t (s)

CUB
for Result Appr. Trans

t (s)
Total
t (s)

#L
CUB Result Appr.

CSMA/CD 3 3 28 TO > invalid? 0.013 0.013 ⊥ - - 0.300 TO 74 > exact
Fischer 2 4 13 TO > invalid? 0.003 0.003 ⊥ - - 0.012 TO 20 > exact

RCP 6 5 48 TO Some invalid? 0.013 0.013 ⊥ - - 0.348 TO 71 ⊥ under

WFAS 4 2 10 TO Some
102% invalid? 0.009 0.009 ⊥ - - 0.246 1848 40 Some

100% exact

AndOr 4 4 27 TO Some
166% invalid? 0.012 0.012 ⊥ - - 0.059 TO 34 Some

100% under

Flip-flop 5 2 52 0.058 ⊥ exact 0.002 0.086 > ⊥ exact 0.010 0.972 58 ⊥ exact
Sched5 21 2 153 190 ⊥ exact 0.051 0.051 ⊥ - - 1.180 TO 180 ⊥ under
simop 8 2 46 TO ⊥ invalid? 0.012 0.012 ⊥ - - 0.219 TO 81 ⊥ under

train-gate 5 9 11 TO ⊥ invalid? 0.000 TO Some ⊥ under 0.059 TO 23 ⊥ under

coffee 2 3 4 TO Some
100% invalid? 0.000 TO Some Some

100% under 0.012 TO 10 Some
100% under

CUBPTA1 1 3 2 0.006 >
208% over 0.000 0.015 Some Some

69% under 0.006 0.073 6 Some
100% exact

JLR13 2 2 2 TO ⊥ invalid? 0.000 TO > ⊥ under 0.000 TO 3 ⊥ under

Table I: Experimental comparison of the three algorithms

faster (0.006 s) but obtains too many valuations (208 % of the
expected result) as it infers many Zeno valuations.

Note that flip-flop is a hardware circuit modeled using a bi-
bounded inertial delay, and is therefore CUB for all valuations.

An interesting benchmark is WFAS, for which our trans-
formation procedure terminates whereas synthCycle does not.
Therefore, we get an exact result while the traditional proce-
dure cannot produce any valuable output.

As a conclusion, CUBdetect seems to be faster but less
complete than CUBtrans. As for CUBtrans, its result is almost
always more valuable than synthCycle, and therefore is the
most interesting algorithm.

VI. CONCLUSION

We proposed a technique to synthesize valuations for which
there exists a non-Zeno infinite run in a PTA. By adding
accepting states, this allows for parametric model checking
with non-Zenoness assumption. Our techniques rely on a
transformation to a disjunctive CUB-PTA (or in some cases
on a simple detection of the valuation for which the PTA
is already CUB), and then on a dedicated cycle synthesis
algorithm. We implemented our techniques in IMITATOR and
compared our algorithms on a set of benchmarks.

a) Future works: Our technique relying on CUB-PTAs
extends the technique of CUB-TAs: this technique is shown
in [23] to be the most efficient for performing non-Zeno model
checking for TAs. However, for PTAs, other techniques (such
as yet to be defined parametric extensions of strongly non-
Zeno TAs [22] or guessing zone graph [13]) could turn more
efficient and should be investigated.
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[3] É. André. What’s decidable about parametric timed automata? In
FTSCS, CCIS, pages 52–68. Springer, 2015.
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